
CS395T: Continuous Algorithms, Part V
Acceleration and high-order methods

Kevin Tian

1 Acceleration
In this lecture, we conclude our development on the basic theory of derivative-based optimization
for structured functions. We begin by discussing the phenomenon of acceleration, a powerful tool
introduced by [Nes83] (with an earlier version in [Nem82]). The main sales pitch for acceleration is
that methods developed with this technique have resulted in provably optimal algorithms under a
variety of oracle access models (e.g., gradient or high-order derivative queries). The general philos-
ophy behind acceleration (maintaining history-dependent updates, or implementing momentum)
has also been very empirically succesful in training deep neural networks [SMDH13].

Unfortunately, acceleration has garnered a reputation for being rather difficult to understand.
There has been significant effort by the community to develop more intuition for how acceleration
arises [Har13, BLS15, SBC16] and how to design accelerated algorithms [LRP16, ZO17, CST21].

We present a proof of acceleration which is built up to in several stages, patterned off Parts II and
III of the notes. We begin from a continuous perspective (i.e., a second-order ODE), implicitly
discretize the continuous dynamics to obtain an accelerated proximal point method, and finally
fully discretize it to give an explicit gradient-based method. Each stage has relatively short proofs,
which we hope grants intuition on how the different parts of the final accelerated method arise.

1.1 Acceleration in continuous time
The basic intuition behind acceleration is that it learns a trajectory over time, by accumulating
previously-queried gradients. This can be naturally modeled as a second-order differential equation,
which maintains an acceleration variable (i.e., the change in velocity) ẍt := d2

dt2xt, in addition to a
velocity variable ẋt. Note that in the gradient flow dynamics, we only maintain a velocity variable.

The following accelerated gradient flow dynamics were introduced by [SBC16]:

ẍt +
3

t
ẋt +∇f(xt) = 0. (1)

An equivalent way to interpret the dynamics (1) is by decoupling the position and velocity variables:

v̇t = −3

t
vt −∇f(xt), ẋt = vt.

We now give a proof that f(xt) decays at an accelerated 1
t2 rate, following [SBC16].

Proposition 1 (Accelerated gradient flow). Let f : Rd → R be convex and L-smooth for L > 0,1
and let x? ∈ argminx∈Rdf(x). For xt following the ODE (1) starting from x0 ∈ Rd and ẋ0 = 0d,

f(xt)− f(x?) ≤
2 ‖x0 − x?‖22

t2
.

Proof. Our strategy is to prove that Φ̇t ≤ 0, where our potential function Φt is defined by

Φt := t2 (f(xt)− f(x?)) + 2 ‖zt − x?‖22 , where zt := xt +
t

2
ẋt,

1This is enough to conclude that (1) has a unique solution, by the Picard-Lindelöf theorem.
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from which the conclusion follows because Φt ≥ f(xt)− f(x?) and z0 = x0. We first compute

Φ̇t = 2t (f(xt)− f(x?)) + t2 〈∇f(xt), ẋt〉+ 2 〈zt − x?, 3ẋt + tẍt〉
= 2t (f(xt)− f(x?)) + t2 〈∇f(xt), ẋt〉 − 2t 〈∇f(xt), zt − x?〉
= 2t (f(xt)− f(x?)− 〈∇f(xt),xt − x?〉) ,

where we substituted (1) in the second line. Our claim Φ̇t ≤ 0 now follows by convexity.

While Proposition 1 is a remarkably short proof-of-concept that acceleration is achievable, it is
somewhat magical. One takeaway is that it is useful to design a “fast-forwarded” trajectory zt,
which induces cancellations in potential functions due to the second-order nature of (1). A mystery
that arises is the specific choice of the constant 3 in (1). There is discussion in Section 4, [SBC16]
on a phase transition that arises around this constant based on the damping behavior of the ODE.

We present an alternative convergence guarantee for a variant of accelerated gradient flow in the
well-conditioned regime (cf. Section 4, Part II), i.e., assuming that the function of interest f is
strongly convex. By the reduction in Lemma 11, Part II between the smooth and well-conditioned
regimes, the rates achieved by Proposition 1 and Proposition 2 are analogous.

Proposition 2 (Accelerated gradient flow, well-conditioned regime). Let f : Rd → R be L-smooth
and µ-strongly convex, let κ := L

µ , and let x? ∈ argminx∈Rdf(x). For xt following the ODE

ẍt +
2√
κ
ẋt +

1

L
∇f(xt) = 0, (2)

from x0 ∈ Rd and ẋ0 = 0d,

f(xt)− f(x?) ≤ 2 exp

(
− t√

κ

)
(f(x0)− f(x?)) .

Proof. Similarly to the proof of Proposition 1, we rewrite (2) in the following way:

ẋt +
√
κẍt = − 1

µ
√
κ
∇f(xt)− ẋt,

so that the “fast-forwarded” trajectory zt := xt +
√
κẋt satisfies

żt = ẋt +
√
κẍt = − 1

µ
√
κ
∇f(xt) +

1√
κ

(xt − zt). (3)

The potential we track in this proof is

Φt := f(xt)− f(x?) +
µ

2
‖zt − x?‖22 .

We claim Φ̇t ≤ − 1√
κ

Φt, from which the conclusion follows from Grönwall’s inequality (Fact 1, Part

II) and strong convexity, which implies Φ0 = f(x0)− f(x?) + µ
2 ‖x0 − x?‖22 ≤ 2 (f(x0)− f(x?)).

To prove our claim, we derive

Φ̇t = 〈∇f(xt), ẋt〉+ µ 〈żt, zt − x?〉

= − 1√
κ

(〈∇f(xt),xt − zt〉+ 〈∇f(xt) + µ(zt − xt), zt − x?〉)

= − 1√
κ

(〈∇f(xt),xt − x?〉+ µ 〈zt − xt, zt − x?〉)

≤ − 1√
κ

((
〈∇f(xt),xt − x?〉 − µ

2
‖xt − x?‖22

)
+
µ

2
‖zt − x?‖22

)
≤ − 1√

κ
Φt.

The second line used our definitions of zt and żt in (3), the first inequality used Eq. (7), Part III
and dropped a nonnegative term, and the second inequality used strong convexity of f .
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1.2 Accelerated proximal point
Acceleration is sometimes viewed as arising from a careful “linear coupling” between gradient
descent and mirror descent, that benefits from the convergence guarantees of each [ZO17]. Indeed,
the key analysis technique from mirror descent (i.e., the three-point equality in Eq. (7), Part III)
has already suggestively made an appearance in the proof of Proposition 2.

Before fully discretizing the ODE (1), in this section we present an implicit variant known as the
accelerated proximal point algorithm (APPA) [Gü92], in analogy to the proximal point method of
Section 2, Part III. We choose this presentation format for a few reasons, e.g., it leads to a slightly
simpler proof, and is more consistent with our later development in Section 2 for accelerated high-
order methods. Moreover, by comparing this section with our final method in Section 1.3, the role
of gradient descent under the linear coupling perspective becomes more clear.

The APPA is initialized with (A0,x0) ∈ R≥0 × Rd, and is driven by step sizes {λk}k≥1 ⊂ R≥0. It
evolves three sequences {xk}k≥0, {yk}k≥0, {zk}k≥0, initialized at z0 = y0 ← x0, as follows:

yk ←
Ak
Ak+1

xk +
ak+1

Ak+1
zk,

zk+1 ← zk − ak+1∇f(xk+1),

xk+1 ← yk − λk+1∇f(xk+1),

(4)

for all k ≥ 0, where

Ak+1 ← Ak + ak+1, ak+1 ←
λk+1 +

√
λ2
k+1 + 4λk+1Ak

2
. (5)

At this point, it is helpful to provide some intuition on the form of (4), (5), so they do not seem
to appear out of nowhere. First, observe that if we fix A0 and the step size sequence {λk}k≥1, the
sequences {Ak, ak}k≥1 are uniquely induced via (5). Moreover, by the quadratic formula, we have
from (5) that the following recurrence relation holds for all k ≥ 0:

a2
k+1 − λk+1ak+1 − λk+1Ak = a2

k+1 − λk+1Ak+1 = 0 =⇒ a2
k+1 = λk+1Ak+1. (6)

The form of the sequences in (4) has a simple intuition. The sequence of {xk}k≥1 evolve via the
proximal point method (Theorem 1, Part III with X = Rd and ϕ = 1

2 ‖·‖
2
2) using step sizes {λk}k≥1.

Conversely, the sequence of {zk}k≥1 evolve via mirror descent (Theorem 2, Part III), using step
sizes {ak}k≥1 and linear functions induced via the {∇f(xk)}k≥1.

Finally, the sequence of {yk}k≥1 are formed by convex combinations of the other two sequences.
For this reason, APPA can be viewed as a “linear coupling” of the proximal point method and mirror
descent, foreshadowing a similar linear coupling interpretation of our final accelerated method.

The main invariant satisfied by the iterations (4), (5) is given by the following technical lemma.

Lemma 1. Let f : Rd → R be differentiable and convex. Following the notation (4), (5), define

Φk := Akεk + rk, where εk := f(xk)− f(x?), and rk :=
1

2
‖zk − x?‖22 , (7)

for all k ≥ 0, where x? := argminx∈Rdf(x). Then for all k ≥ 0, Φk+1 ≤ Φk.

Proof. By the definition of yk in (4), we have

ak+1 〈∇f(xk+1),x? − zk〉 = ak+1 〈∇f(xk+1),x? − xk+1〉+ ak+1 〈∇f(xk+1),xk+1 − zk〉
= ak+1 〈∇f(xk+1),x? − xk+1〉
+Ak 〈∇f(xk+1),xk − xk+1〉+Ak+1 〈∇f(xk+1),xk+1 − yk〉
≤ ak+1 (f(x?)− f(xk+1)) +Ak (f(xk)− f(xk+1))

+Ak+1 〈∇f(xk+1),xk+1 − yk〉 ,
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where in the only inequality, we applied convexity twice. By substituting the definition of xk+1

from (4), and using the equality (6), we have

ak+1 〈∇f(xk+1),x? − zk〉 ≤ Ak (f(xk)− f(x?))−Ak+1 (f(xk+1)− f(x?))

− a2
k ‖∇f(xk+1)‖22

= Akεk −Ak+1εk+1 − a2
k+1 ‖∇f(xk+1)‖22 .

(8)

Moreover, by using the standard mirror descent analysis (see, e.g., Eq. (11), Part III) we have

ak+1 〈∇f(xk+1), zk − x?〉 ≤ 1

2
‖zk − x?‖22 −

1

2
‖zk+1 − x?‖22 +

a2
k+1

2
‖∇f(xk+1)‖22

= rk − rk+1 +
a2
k+1

2
‖∇f(xk+1)‖22 .

(9)

Combining (8) and (9), we have the conclusion:

0 ≤ Φk − Φk+1 −
a2
k+1

2
‖∇f(xk+1)‖22 ≤ Φk − Φk+1. (10)

At this point, by applying Φk ≤ Φ0, it is evident that the function error εk decreases at a rate
proportional to 1

Ak
, so our goal is to choose {λk}k≥1 so that Ak grows as quickly as possible. In

principle, we could simply choose λk →∞; however, this will pose issues when we discretize APPA
in the following Section 1.3. We provide a simple bound when λk ≡ λ uniformly.

Lemma 2. Following the notation in (4), (5), suppose that λk = λ for all k ≥ 1. Then,

Ak ≥
λk2

4
.

Proof. This follows from the sequence of bounds:√
Ak =

√
Ak −

√
A0 =

∑
i∈[k]

√
Ai −

√
Ai−1

=
∑
i∈[k]

ai√
Ai +

√
Ai−1

=
∑
i∈[k]

√
λiAi√

Ai +
√
Ai−1

≥ 1

2

∑
i∈[k]

√
λi =

k
√
λ

2
,

where the second line used (6), and the third line used that the {Ak}k≥1 are nondecreasing.

By combining Lemma 1 with Lemma 2, we obtain the main result of this section.

Theorem 1 (Accelerated proximal point). Let f : Rd → R be convex and differentiable, and
suppose for x0 ∈ Rd we have ‖x0 − x?‖2 ≤ R for x? ∈ argminx∈Rdf(x). Further, let A0 = 0 and
λk = λ > 0 for all k ≥ 1. Then iterating (4), (5) for 0 ≤ k < T ,

f(xT )− f(x?) ≤ 2R2

λT 2
.

Proof. By Lemma 1, we have

f(xT )− f(x?) = εT ≤
ΦT
AT
≤ Φ0

AT
≤ R2

2AT
.

The conclusion follows from Lemma 2.

Theorem 1 generically improves upon our analysis of smooth gradient descent (Theorem 3, Part II)
by a quadratic factor in the dependence on T , as long as λ ≥ 1

L . The catch, of course, is that the
iteration (4) is implicit: we cannot exactly compute the proximal point sequence {xk}k≥0 in general
(cf. discussion in Remark 2, Part III). This motivates our development in the following Section 1.3,
where for smooth functions f , we show how to match the convergence rate of Theorem 1 (for an
appropriate choice of λ) using an explicit first-order method.
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1.3 Accelerated gradient descent
In this section we finally show how to fully discretize the accelerated gradient flow (1) to obtain
Nesterov’s accelerated gradient descent (AGD) algorithm. In fact, we have already seen the main
pieces that we need to put together. Roughly speaking, the key observation is that there is slack
in the proof of Lemma 2, in the form of a squared gradient norm (see (10)). We use this slack to
compensate for the discretization error that occurs when we take a gradient descent step in place
of the proximal point iteration used to define (4), using Corollary 2, Part II.

We again initialize AGD with (A0,x0) ∈ R≥0×Rd. In this section, we uniformly set λk = 1
L for all

k ≥ 1, where L is the smoothness of f that we wish to minimize. We again initialize our sequences
{xk}k≥0, {yk}k≥0, {zk}k≥0 from z0 = y0 ← x0, and evolve them very similarly to (4):

yk ←
Ak
Ak+1

xk +
ak+1

Ak+1
zk,

zk+1 ← zk − ak+1∇f(yk),

xk+1 ← yk −
1

L
∇f(yk),

(11)

for all k ≥ 0, where {Ak, ak}k≥1 again follow the recursion (5). That is, compared to (4), (11) is
exactly the same except it uses the (explicit) gradients computed at the previous point yk, rather
than the (implicit) gradient computed via the proximal point iterate xk+1.

As we can see, (11) performs a linear coupling of mirror and gradient descent, just as (4) linearly
coupled mirror descent and the proximal point method. The intuition provided in [ZO17] is that
mirror descent works well when gradients are small (as reflected in the Lipschitz parameter arising
in Theorem 2, Part III), and gradient descent works well when gradients are large (as seen in the
progress bound in Corollary 2, Part II). Thus, (11) balances the benefits of each method.

We produce the analog of Lemma 1 in the setting of AGD.

Lemma 3. Let f : Rd → R be L-smooth and convex. Following the notation in (5), (7), (11), and
letting λk = 1

L for all k ≥ 1, we have for all k ≥ 0 that Φk+1 ≤ Φk.

Proof. Replicating the proof of Lemma 1, we first derive

ak+1 〈∇f(yk),x? − zk〉 = ak+1 〈∇f(yk),x? − yk〉+ ak+1 〈∇f(yk),yk − zk〉
= ak+1 〈∇f(yk),x? − yk〉+Ak 〈∇f(yk),xk − yk〉
≤ ak+1 (f(x?)− f(yk)) +Ak (f(xk)− f(yk)) ,

where again we used the definition of yk and convexity twice. Next, analogously to (8), we have

ak+1 〈∇f(yk), zk − x?〉 ≤ rk − rk+1 +
a2
k+1

2
‖∇f(yk)‖22

≤ rk − rk+1 + a2
k+1L (f(yk)− f(xk+1))

= rk − rk+1 +Ak+1 (f(yk)− f(xk+1)) ,

where in the second line, we used the progress of smooth gradient descent (Corollary 2, Part II),
and in the last line, we used (6) and λk+1 = 1

L .

We have arrived at our main AGD convergence result, whose proof is identical to Theorem 1.

Theorem 2 (Accelerated gradient descent). Let f : Rd → R be L-smooth and convex, and suppose
for x0 ∈ Rd we have ‖x0 − x?‖2 ≤ R for x? ∈ argminx∈Rdf(x). Further, let A0 = 0 and λk = 1

L >
0 for all k ≥ 1. Then iterating (5), (11) for 0 ≤ k < T ,

f(xT )− f(x?) ≤ 2LR2

T 2
.

Theorem 2 generically improves Theorem 3, Part II, and (via the reduction in Lemma 11, Part II)
achieves the tight rate for smooth and well-conditioned convex optimization via gradient queries.
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We note that there is a rewriting of the updates (11) commonly seen in derivations of AGD that
has a rather intuitive interpretation. In particular, observe that by using (6),

zk+1 = zk + ak+1L (xk+1 − yk)

=

(
yk +

Ak
ak+1

(yk − xk)

)
+
Ak+1

ak+1
(xk+1 − yk) = xk+1 +

Ak
ak+1

(xk+1 − xk) ,

so that the update (11) is equivalent to iterating

xk+1 ← yk −
1

L
∇f(yk), yk+1 ← xk+1 +

Ak
Ak+1

(xk+1 − xk) . (12)

The iteration (12) explains why acceleration is also often referred to as “momentum,” as it can be
more concisely described by two update sequences, one of which is advanced via gradient descent,
and the other of which is advanced via a history-dependent difference sequence. We also see how
this momentum update reflects a discretization of our accelerated gradient flow ODE (1), i.e.,

yk+1 ← yk +
Ak
Ak+1

(xk+1 − xk)− 1

L
∇f(yk),

where the two update terms correspond to a momentum term (i.e., accumulating part of the current
velocity), and a gradient term, just as in (1). We remark that we are not aware of a “one-sequence”
iteration that achieves the tight accelerated rate, so advancing two different sequences of iterates
in the discretization of (1) may be inherent. However, there has been interesting recent work on
beating the 1

T rate of standard gradient descent for smooth, convex functions using alternative
discretization techniques such as choosing a careful sequence of step sizes [Gri24, AP23].

Finally, we briefly describe when acceleration is possible in non-Euclidean settings. The conven-
tional wisdom in this regard is that there are two criteria that must be met: to achieve a 1

T 2 rate
for minimizing convex f : X → R, we should require that f is L-smooth with respect to some norm
‖·‖, and that there exists a “small” regularizer ϕ : X → R that is 1-strongly convex with respect to
the same norm. For an upper bound achieving this rate, see Theorem 4.1 of [ZO17]. More formally,
by small we mean that if ϕ has an additive range of Θ over X , then the convergence rate scales as
LΘ
T 2 . Theorem 2 reflects this, where Θ = 1

2R
2 for the regularizer ϕ = 1

2 ‖·‖
2
2 over B(R). This poses

an issue in norms for which there provably do not exist strongly convex regularizers with additive
ranges growing slowly with the dimension d, e.g., the `∞ norm (cf. Appendix A.1, [ST18]).

One could hope that weaker conditions suffice for acceleration that bypass this strongly convex
additive range issue, e.g., that f is relatively smooth in ϕ (Definition 2, Part III), which in principle
could let us design smaller regularizers ϕmore directly tailored to the geometry of f . Unfortunately,
there are lower bounds precluding acceleration in this setting [DTdB22], highlighting that this
phenomenon is brittle when extending to non-Euclidean applications.

2 High-order methods
kjtian: TODO: will complete by next week.

2.1 Stationary points
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Source material
Portions of this lecture are based on reference material in [], as well as the author’s own experience
working in the field.
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